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Chapter 1

Group Theory

1.1 Definitions

Definition 1. A group is a setG, equipped with a binary operationG×G −→ G
such that

1. (a · b) · c = a · (b · c) for all a, b, c ∈ G.

2. there exists 1 ∈ G text s.t. 1 ·g = g · 1 = g for all g ∈ G.

3. for all g ∈ G there exists g−1 ∈ G s.t. g · g−1 = g−1 · g = 1.

We will denote the binary operation of an additive group by +, 0 the identity
and −g the inverse of g. Otherwise, we will denote the binary operation using
·.

Lemma 1. The identity of a group is unique.

Proof. Let 1, 1′ be two identity elements, then

1 = 1 · 1′ = 1′.

Lemma 2. The inverse element is unique.

Proof. Let g ∈ G and h1, h2 ∈ G be two inverses of g. Then

h1 = h1 · 1 = h1 · (g · h2) = h2.

Exercise 1. Suppose every g ∈ G has a left-inverse. Then every g ∈ G has a
right inverse.
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Proof. Let g ∈ G. Then

g−1 = g−1 · g · g−1.

Let c be the left inverse to g−1. Then we can write 1 = c ·g−1 = c ·g−1 ·g ·g−1 =
g · g−1. This implies that g has a right inverse.

Definition 2. For n ∈ Z and g ∈ G we define gn = g · . . . · g (n-times multipli-
cation) if n ≥ 1. If n ≤ −1 we define gn = (g−1)−n. If n = 0 we define g0 = 1.
The case for additive notation is similar.

Generally we will omit the multiplication symbol where not needed.

Definition 3. G is abelian if gh = hg for all g, h ∈ G.

Here are some important examples of groups:

Example 1. Let S be a set. The symmetric group G = Per(S) is the set of
all permutations of S to itself equipped with composition. A permutation is a
bijection φ : S −→ S.

In the special case that |S| = n we have Sn which is characterized by cycles.
A nice formula to decompose a cycle is given by

(a1 . . . ar) = (a1 a2)(a2 a3) . . . (ar−1 ar).

Later in the notes we will prove Cayley’s theorem, which states that every
group is isomorphic to a subgroup of Per(G). Here Per(G) carries absolutely no
group structure from G, and so this is important because this means that all
examples/counter-examples that are formulated can be formulated in terms of
Per(S) for some set S. There are other important examples of groups (below),
which are interesting in their own right.

Example 2. Let V be a vector space over a field F . The general linear group
GL(V ) is the group of linear automorphisms φ : V −→ V . In particular with
V = Fn we write GL(V ) by GL(n, F ). For a general group G we define by
Aut(G) is the group of all automorphisms from G to itself.

Example 3. For any field F we have the additive group F+ and the multi-
plicative group F× = F \ {0}

Definition 4. Let G1, G2 be two groups. The direct product of G1 and G2

is defined as G1 × G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2} with component-wise
multiplication. The direct product G1 × G2 is a group. More generally given
an index set I and Gi a group for all i ∈ I we define∏

i∈I

Gi = {(gi)i∈I , gi ∈ Gi},

called the direct product of each Gi, which is a group with component-wise
multiplication.
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1.2 Subgroups and Homomorphisms

Definition 5. Let G be a group. A subgroup H ⊂ G is a subset such that

1. gh ∈ H for all g, h ∈ H.

2. g−1 ∈ H for all g ∈ H.

3. 1 ∈ H.

Clearly a subgroup H forms a group. A simple way to verify whether a
subset H ⊂ G forms a subgroup is to check if H is not empty and ab−1 ∈ H for
all a, b ∈ H. Every group G has two subgroups {1} and G, the so called trivial
subgroups. Any other subgroup of G is called proper. If H1, H2 are subgroups
of G, then so is H1 ∩H2.

Definition 6. Let S ⊂ G be a set. The smallest subgroup containing S is
denoted by ⟨S⟩. We define the smallest subgroup ⟨S⟩ to be the subgroup such
that for any subgroup S ⊂ H, we have ⟨S⟩ ⊂ H.

Lemma 3. ⟨S⟩ = {s1 · s2 · . . . · sn : si ∈ S or s−1
i ∈ S}.

The following one can prove by induction:

Lemma 4. For all g1, . . . , gn ∈ G we have (g1 · . . . · gn)−1 = g−1
n · . . . · g−1

1 .

Definition 7. A cyclic group G is a group such that G = ⟨g⟩ for some g ∈ G.

We now begin the discussion of group homomorphisms, along with some
properties:

Definition 8. A group homomorphism φ : G −→ G′ is a map such that φ(gh) =
φ(g)φ(h) for all g, h ∈ G.

Lemma 5. If φ : G −→ G′ is a group homomorphism then φ(1) = 1.

Lemma 6. If φ : G −→ G′ is a group homomorphism then φ(g−1) = φ(g)−1

for all g ∈ G.

Definition 9. A group homomorphism φ : G −→ G′ that is bijective is called
a group isomorphism. G and G′ are said to be isomorphic. We write G ∼= G′.

Definition 10. Group endomorphisms are group homomorphisms φ : G −→ G.
Group automorphisms are group isomorphisms φ : G −→ G. The set of all auto-
morphisms of a group G forms a group under composition. Group epimorphisms
are surjective group homomorphisms φ : G −→ G′. Group monomorphisms are
injective group homomorphisms φ : G −→ G′.

Here are some examples below of group homomorphisms:

Example 4. Z has exactly one homomorphism to any group G, which is de-
termined by where 1 ∈ Z maps to.
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Proof. Let φ : Z −→ G be a homomorphism. Suppose φ(1) = a ∈ G. Then
φ(n) = φ(1)n = an for any n ∈ Z.

More generally this shows that group homomorphisms preserves cylic prop-
erties of groups.

Example 5. Fix n ∈ Z and consider the map φ : G −→ G defined by φ(g) = gn.
Then φ is a group homomorphism if G is abelian.

Proof. Suppose G is abelian. Then (ab)n = anbn (by induction).

One more example of a group homomorphism:

Example 6. Let I be an index set and ∅ ̸= J ⊂ I. Then the canonical map

Πj∈IGj −→ Πj∈JGj ,

defined by (gj)j∈I −→ (gj)j∈J is a group homomorphism.

Note that if S ⊂ G then if we are given any map f : S ⊂ G, we can
extend this map to at most one group homomorphism f ′ : ⟨S⟩ −→ G. Such
a homomorphism may not exist. This is the so called universal property of
group homomorphisms. Note also that the composition of two homomorphisms
is again a homomorphism.

1.3 Kernels, Images, and Cosets

We begin by defining some very important subgroups.

Definition 11. Let φ : G −→ G′ be a group homomorphism. Then the kernel
of φ is kerφ = {g ∈ G : φ(g) = 0}. The kernel is a subgroup of G.

Definition 12. Let φ : G −→ G′ be a group homomorphism. Then the image
of φ is imφ = {φ(g) : g ∈ G}. The image is a subgroup of G′.

Note that φ is a monomorphism iff kerφ = {1} and φ is an epimorphism iff
imφ = G′.

Now we will move onto cosets. Let H ⊂ G be a subgroup. For fixed g ∈ G
the set gH = {gh : h ∈ H} is called the left coset of H in G. A representative
of gH is any element b = gh ∈ gH. In this case we have gH = bH since H is a
subgroup. We formuate this in the next Lemma:

Lemma 7. Let H ⊂ G be a subgroup. Then two cosets of H in G are either
equal or disjoint.

Proof. Take two cosets gH and g′H and suppose gH ∩ g′H ̸= ∅. Let x ∈
gH ∩ g′H. Then x = gh = g′n for h, n ∈ H. Hence, g = g′nh−1 ∈ g′H.
Thus, gH = g′(nh−1)H ⊂ g′H, since H is a subgroup. Conversely, we have
g′ = ghn−1 ∈ gH, so g′H = g(hn−1)H ⊂ gH.
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We denote by G/H = {gH : g ∈ G} the set of all cosets of H in G. Using
this, we can then define the rule ∼ on G by g ∼ h iff gh−1 ∈ H (where we fix a
subgroup H beforehand). This rule becomes an equivalence relation on G.

Lemma 8. Given a subgroup H and two elements g, n ∈ G we have gH = nH
iff n−1g ∈ H.

Proof. Let g, n ∈ G and suppose gH = nH. This means that there is h ∈ H
such that g = nh and so n−1g ∈ H. Conversely if n−1g = h ∈ H then
g = nh ∈ nH. Then gH = nhH ⊂ nH. With the same ideas we can write
nH = gh−1H ⊂ gH.

Now we have another neat useful Lemma:

Lemma 9. Let g ∈ G and H ⊂ G be a subgroup. Then g−1 ∈ gH iff g2 ∈ gH.

Proof. Suppose g−1 ∈ gH. Then g−1 = gh for some h ∈ H and so h = g−2,
hence g2 ∈ H because H is a subgroup. On the other hand, suppose that
g2 ∈ gH. Then g2 = gh for some h ∈ H implying that h = g. Thus, g−1 ∈ H as
H is a subgroup.

Definition 13. The index ofH inG, [G : H] is the size ofG/H = {gH : g ∈ G}.
We define the order of G to be the index of {1} in G.

Lemma 10. For any chain K ⊂ H ⊂ G of subgroups one has

[G : K] = [G : H][H : K].

Proof. Let {hi}ni=1 be a system of representatives for G/H, (recall that G =⋃n
i=1 hiH, infact this union is disjoint). Let {ki}mi=1 be a system of representa-

tives of H/K (G =
⋃m

i=1 kiK). Then

G =
⋃
i,j

hikjK

is a disjoint union of nm cosets. Thus [G : K] = [G : H][H : K].

Now we discuss Lagrange’s theorem.

Theorem 11. Let G be a group and H ⊂ G be a subgroup. Then |H| divides
|G| and |H| [G : H] = |G| .

Proof. Take K = {1} in Lemma 10.

Recall, that if |G| = p for some prime p, then G is cyclic. In fact, G is
generated by any 1 ̸= g ∈ G. Let 1 ̸= g ∈ G. Then |⟨g⟩| divides |G| so this
implies either ⟨g⟩ = {1} or |g| = G, but the former is not possible since g ∈ ⟨g⟩.

6



1.4 Normal Subgroups and Quotient Groups

First, consider a group homomorphism φ : G −→ G′, it follows that if H =
kerφ then xHx−1 ⊂ H for all x ∈ G. Since this also holds for x−1 we obtain
x−1Hx ⊂ H and thus H ⊂ xHx−1, so we conclude that xHx−1 = H. This
prompts the definition of a normal subgroup:

Definition 14. A subgroup H of G is called normal if xHx−1 = H for all
x ∈ G.

Definition 15. Let A be a non-empty set. The normalizer of A in G is defined
as

NG(A) = {g ∈ G : gAg−1 ⊂ A},

and is a subgroup of G.

Definition 16. Let A be a non-empty set. The centralizer of A in G is defined
as

CG(A) = {g ∈ G : ga = ag for all a ∈ A},

and is a subgroup of G.

We define the center of G to be Z(G) = CG(G). If H is a subgroup of G
then H is normal in NG(H). In fact, NG(H) is the largest such subgroup of G
for which H is normal. This is immediate from the definition of NG(H).

Note that the centralizer of a subgroup H in a group G is not necessarily
abelian. Indeed, take G = S3, then G is not abelian and CS3

({1}) = S3. On
the other hand, note that Z(G) is always abelian. Indeed, if g1, g2 ∈ Z(G) then
g1g2 = g2g1, simply by the definition of Z(G). Indeed also, Z(G) is normal in
G since if g ∈ G and z ∈ Z(G) then gzg−1 = zgg−1 = z ∈ Z(G). In general,
not every abelian subgroup is normal in a group G. It is also important to note
that Z(G) =

⋂
g∈GNG({g})

Lemma 12. The following are equivalent for a subgroup H ⊂ G. 1. The opera-
tion (gH, g′H) −→ gg′H is well defined. 2. For all g ∈ G one has gHg−1 ⊂ H.
3. For all g ∈ G one has gHg−1 = H. 4. For all g ∈ G one has gH = Hg. 5.
NG(H) = G. All of these are equivalent definitions of a normal subgroup.

We will leave this Lemma as an exercise because it really is not too difficult
to figure out if you have been following along until now.

Now, given a normal subgroup H ⊂ G of a group G. We can endow a
group structure on G/H by the multiplication (g1H, g2H) −→ g1g2H. Under
this operation we have the following very important lemma. For one, it suffices
to note that if one has a group homomorphism φ : G −→ G′ then any subgroup
K of H = kerφ is normal in G (as explained above, but one can deal with
subgroups of kerφ rather easily). On the other hand one has the following
lemma:

Lemma 13. Let H be a normal subgroup of G. Then H is the kernel of a group
homomorphism.
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Proof. Define the map φ : G −→ G/H by g −→ gH. Then kerφ = {g ∈ G :
gH = H} = {g ∈ G : g ∈ H} = H ∩G = H.

Hence, there is a one to one correspondence between normal subgroups and
kernels of group homomorphisms. It is important to note also that the inter-
section of normal subgroups is also normal.

1.5 Structure and Isomorphism Theorems

The structure (isomorphism) theorems are theorems chosen so that the structure
of a group is understood more.

Lemma 14. Let G be a group and H be a subset of G. Then H is a subgroup
iff H2 = H,H−1 = H and H ̸= ∅.

This above Lemma is immediate and not hard to show.

Lemma 15. Let G be a group and H, K be two subgroups of G. Then HK is
a subgroup of G iff HK = KH.

Proof. Suppose that HK is a subgroup. Indeed then HK = (HK)−1 =
K−1H−1 = KH. On the other hand if HK = KH then HKHK = HHKK =
HK, and also (HK)−1 = (KH)−1 = H−1K−1 = HK. Indeed also HK is
non-empty, so we are done.

Lemma 16. Let G be a group and H,K ⊂ G be subgroups. Suppose that
H ∩ K = {1} and KH = HK = G. Then the map H × K −→ G defined by
(h, k) −→ hk is an isomorphism.

Proof. Verifying that the map is a homomorphism is easy, since HK = KH.
Then HK = G means that the map is surjective. If the map is f , then if
(h, k) ∈ ker f then f((h, k)) = hk = 1, so h = k−1, the left element is in H and
the right element is inK so we conclude h ∈ H∩K. Same with k ∈ H∩K. Then
hk ∈ H ∩K because H ∩K is a subgroup. Thus (h, k) = {(1, 1)} ⊂ H ×K.

Lemma 17. Suppose that H, K are subgroups of a group G. If H is a subgroup
of NG(K) (that is, for all h ∈ H, hKh−1 ⊂ K, i.e. we say that H normalizes
K), then HK is a subgroup of G. In particular, if K is a normal subgroup of
G then HK is a subgroup for any H.

Proof. We want to show that HK = KH. We have HK =
⋃

h∈H hK =⋃
h∈H Kh = KH, where we used that H normalizes K.

Lemma 18. Suppose H and K are subgroups of a group G and that HK is a
subgroup. Then HK = ⟨H,K⟩.

Proof. We have that ⟨H,K⟩ is the smallest subgroup that contains both H and
K. In particular this means that ⟨H,K⟩ ⊂ HK. One the other hand, since
⟨H,K⟩ is the intersection of all subgroups that contain H and K we have that
⟨H,K⟩ ⊂ HK because HK is a part of this intersection.
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Now we discuss the isomorphism theorems. These theorems are essentially
the bread and butter of this text. First we begin with some motivation. Suppose
that G is a group and N is normal in G, and we have a homomorphism φ : G −→
H. Consider the canonical projection G −→ G/N , we ask whether there is a
homomorphism φ : G/N −→ H such that φ ◦ π = φ. If such a φ exists then
we would have and n ∈ N is given then φ(n) = φ(π(n)) = φ(N) = 1, so
this implies that N ⊂ kerφ. Conversely if N ⊂ kerφ then define the function
φ : G/N −→ H by φ(gN) = φ(g). Indeed then this map is well defined. Suppose
that g1N = g2N, then g

−1
2 g1 ∈ N ⊂ kerφ, so φ(g−1

2 g1) = 1, which implies that
φ(g1) = φ(g2). Then it is easy to see that φ is a homomorphism since

φ(g1Hg2N) = φ(g1g2N) = φ(g1g2) = φ(g1)φ(g2) = φ(g1N)φ(g2N).

It is also not too hard to see by this definition that φ ◦ π = φ. Therefore
we have a direct correspondence between the set of all subgroups of kerφ and
homomorphisms of the form φ : G/N −→ H. such that φ◦π = φ.More formally,
this is encapsulated in the following theorem:

Theorem 19 (The Factorization Theorem). Let G and H be subgroups with
φ : G −→ H a homomorphism. Let N ⊂ G be a subgroup. Then N ⊂ kerφ iff
there exists a homomorphism φ : G/N −→ H, satisfying φ◦π = φ. Furthermore,
imφ = imφ and φ is uniquely determined by these properties.

Proof. One has

imφ = {φ(x) : x ∈ G} = {φ(xN) : x ∈ G} = {φ(xN) : xN ∈ G/N} = imφ,

where we used the surjectivity of the projection π. Suppose that ψ is another
homomorphism satisfying the above conditions. Then ψ(gN) = ψ(π(g)) =
φ(g) = φ(gN), so we are done.

Now we present the isomorphism theorems:

Theorem 20 (First Isomorphism Theorem). Let φ : G −→ H be a homomor-
phism of groups. Then the map

φ : G/ kerφ −→ H

is an injective homomorphism of groups, inducing an isomorphism G/ kerφ ∼=
imφ.

Proof. The latter part is just a technicality since the images of φ and φ agree,
so we will prove the first part which is not immediate. We want to show that
kerφ = {kerφ}, which is the element 1 in G/ kerφ. Let x kerφ ∈ kerφ. Then
φ(x kerφ) = φ(x) = 1, so x ∈ kerφ and thus x kerφ = kerφ, so kerφ = {kerφ}.
It is important to note that one can not replace kerφ with any subgroup N ⊂
kerφ, since the proof falls apart when we state that x ∈ kerφ (we can not
conclude that xN = kerφ).
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Theorem 21 (Second Isomorphism Theorem). Let G be a group and A,B be
two subgroups of G so that A ⊂ NG(B) (A normalizes B). Then

AB is a subgroup of G and B is a normal subgroup of AB.

A ∩B is a normal subgroup of A.

The map A/(A ∩B) −→ AB/B given by a(A ∩B) −→ aB is an isomorphism.

Proof. Recall that AB is a subgroup of G because we can use the union trick as
in Lemma 17. Now let ab ∈ AB. Then abB(ab)−1 = abBb−1a−1 = aBa−1 ⊂ B
because A ⊂ NG(B) (A normalizes B). Now let a ∈ A. Then

a(A ∩B)a−1 = aAa−1 ∩ aBa−1 ⊂ A ∩B,

again because A normalizes B. The trick of distributing over intersection is
just standard set theory, write it all out if you are confused. Now consider the
map φ : A −→ AB/B defined by a −→ aB. φ is surjective because for all
abB ∈ AB/B one has abB = aB = φ(a). One verifies very easily that φ is a
homomorphism and that kerφ = {a ∈ A : aB = B} = {a ∈ A : a ∈ B} = A∩B,
hence we conlude the result by the First Isomorphism Theorem.

Theorem 22 (Third Isomorphism Theorem). Suppose that K ⊂ H ⊂ G are a
chain of subgroups with H,K normal in G. Then H/K is normal in G/K and the
map G/H −→ (G/K)/(H/K) given by gH −→ gK(H/K) is an isomorphism.

Proof. Let gK ∈ G/K and hK ∈ H/K. Then

gK(hK)(gK)−1 = gK(hK)K−1g−1 = gKhKg−1 = ghKKg−1 = ghKg−1

= ghg−1gKg−1 = ghg−1K ∈ H/K.

because ghg−1 is an element of H. Hence, we can consider the composition of
projections G −→ G/K −→ (G/K)/(H/K) which is a well defined homomor-
phism becauseH/K is normal in G/K. Then what is the kernel of this map? De-
note this map by φ and let h ∈ H. Then hK(H/K) = H/K because hK ∈ H/K,
so H ⊂ kerφ. On the other hand if g ∈ kerφ then gK(H/K) = H/K then
we have that gK ∈ H/K, hence there is h ∈ H such that gK = hK, so
h−1g ∈ K ⊂ H. This means that there is c ∈ H such that h−1g = c and thus
g = hc ∈ H. Hence, kerφ = H and so we can apply the First Isomorphism
Theorem to conclude.

This concludes the main three isomorphism theorems, but there is still one
more isomorphism theorem to talk about. We present simple Lemmas to begin.

Lemma 23. For any homomorphism of groups φ : G −→ H and any subgroups
A ⊂ G and B ⊂ H one has φ(A) is a subgroup and φ−1(B) is a subgroup.
Furthermore, taking images preserves cyclic properties, abelianness, and nor-
malness (normalness if φ is surjective).
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Proof. Let g, h ∈ φ(A) then g = φ(a) and h = φ(b) for some a, b ∈ A. Then
gh−1 = φ(ab−1) ∈ φ(A). Moreover φ(1) = 1 so φ(A) ̸= ∅.

Now let g, h ∈ φ−1(B). Then φ(g) = a, φ(h) = b for some a, b ∈ B. Then
φ(gh−1) = ab−1 ∈ B, so gh−1 ∈ φ−1(B). Furthermore φ−1(B) is non-empty
because 1 ∈ B and 1 = φ(1).

Now suppose that A is cyclic. Then A = ⟨a⟩ for some a ∈ G. Let b ∈ φ(A).
Then b = φ(c) = φ(ak) = φ(a)k, so we conclude that φ(A) = ⟨φ(a)⟩.

Suppose now A is abelian. Let a, b ∈ φ(A). Then ab = φ(g)φ(h) =
φ(h)φ(g) = ba for some g, h ∈ A.

The case where φ is surjective and A is normal in G implies φ(A) is normal
in H is similar.

Theorem 24 (Fourth Isomorphism Theorem). Let G be a group and H be a
normal subgroup of G. Then for any subgroup H ⊂ A ⊂ G one has A/H ⊂ G/H
is a subgroup of G/H and the map A −→ A/H defines a bijection between the
set of all subgroups of G containing H and the set of subgroups of G/H.

Proof. Since H ⊂ A ⊂ G and H is normal in G, it follows that H is normal in
A, so A/H is indeed a group, and a subgroup of G/H because A ⊂ G. Denote
by X the set of subgroups of G/H and Y the set of subgroups of G containing
H. Indeed then, consider the map φ : X −→ Y given by K −→ π−1

H (K). This
map is well defined by Lemma 23, we see that the inverse image is indeed a
subgroup containing H.

We check that π−1
H (A/H) = A. Indeed, A ⊂ π−1

H (A/H) is obvious. On the
other hand if g ∈ π−1

H (A/H) then πH(g) = gH ∈ A/H and thus gH = aH for
some a ∈ A, so a−1g ∈ H, since H ⊂ A it follows that a−1g ∈ A and thus
g ∈ A.

Now if A/H is a subgroup of G/H we check that A/H = π−1
H (A/H)/H. The

containment π−1
H (A/H)/H ⊂ A/H is clear. On the other hand if aH ∈ A/H

then aH ∈ G/H and so there is some g ∈ G such that aH = gH, hence
g ∈ π−1

H (A/H), implying aH = gH ∈ π−1
H (A/H)/H.

Using these two checks we conclude that φ is indeed an inverse to our map
sending A −→ A/H.

This concludes the isomorphism theorems. We now give a couple lemmas
related to the fourth isomorphism theorem.

Lemma 25. Let G be a group and H be a normal subgroup of G. Then the
projection map G −→ G/H preserves the partial order of subgroups. That is,
for any two subgroups A,B s.t. H ⊂ A,B, one has A ⊂ B iff A/H ⊂ B/H.

Proof. Suppose A ⊂ B. Then A/H = {aH : a ∈ A} ⊂ {bH : b ∈ B} = B/H.
On the other hand if A/H ⊂ B/H, let a ∈ A. Then aH ∈ A/H ⊂ B/H and so
there is b ∈ B such that aH = bH, hence b−1a ∈ H but H ⊂ B so this finally
implies a ∈ B.

Lemma 26. Let G be a group and H be a normal subgroup of G. Let H ⊂ K ⊂
G be another subgroup of G containing H. Then K is normal in G iff K/H is
normal in G/H.
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Proof. Suppose K is normal in G. Let gH ∈ G/H and kH ∈ K/H. Then

gH(kH)(gH)−1 = gH(kH)H−1g−1 = gHkHg−1 = gkHHg−1

= gkHg−1 = gkg−1gHg−1,

but then gkg−1 ∈ K because K is normal in G, and also gHg−1 ⊂ H be-
cause H is normal in G, hence gkg−1gHg−1 ∈ kH. On the other hand, sup-
pose that K/H is normal in G/H. Let k ∈ K and g ∈ G. Then we have
gHkH(gH)−1 = gHkHHg−1 = gHkHg−1H = Hgkg−1H = gk−1g−1HH =
gk−1g−1H ∈ K/H. Hence gk−1g−1H = k1H for some k1 ∈ K and therefore we
have gk−1g−1 = k1h for some h ∈ H. But then h ∈ K because H ⊂ K and so
gk−1g−1 ∈ K. Applying inverses yields the result.

One last structure theorem, note that the following theorem holds. We will
omit the proof. It follows by going through the definitions:

Theorem 27. Let G be a group. Then G is abelian iff G/Z(G) is cyclic.

1.6 Exact Sequences

Definition 17. Let G −→f G′ −→g G′′ be a sequence of homomorphisms. We
say that this sequence is exact if im f = ker g.

Some examples of exact sequences, we start with H ⊂ G a normal subgroup.
Then the mappings H −→ G −→ G/H is exact, since im f = H = ker g.
Another example, the homomorphism {1} −→ H −→ G is exact, since im f =
{1} = ker g. Furthermore, G −→ G/H −→ {1} exact, since im f = G/H =
ker g.

Lemma 28. Given a sequence of homomorphisms {1} −→ G −→f G′, this
sequence is exact iff f is a monomorphism. Similarly the sequence G −→f

G′ −→ {1} is exact iff f is an epimorphism.

Proof. Trivial.

More generally, a sequence

G1 −→f1 . . . −→fi−1 Gi −→fi Gi+1 −→fi+1 . . . −→fn−1 Gn

is exact if im fi = ker fi+1 for all 1 ≤ i ≤ n− 2, i.e. it is exact at every part of
the sequence.

For some examples, note that {1} −→ G −→f G′ −→ {1} is exact iff f is an
isomorphism.

Definition 18. A short exact seqeuence is an exact sequence of the form

{1} −→ G −→f G′ −→g G′′ −→ {1}.

In this case all one needs to check is that im f = ker g.
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Some examples of a short exact sequence. The standard short exact sequence
is given by

{1} −→ H −→ G −→ G/H −→ {1},
for H ⊂ G a normal subgroup.

In general, every short exact sequence is essentially given by the standard
one. If one has a short exact sequence

{1} −→ G −→f G′ −→g G′′ −→ {1}

then one can define H = im f and consider the sequence

{1} −→ H −→ G′ −→ G′/H −→ {1},

where every group in each respective sequence spots are isomorphic, and we have
an induced commutative diagram under these isomorphisms. Note also that
any group homomorphism φ : G −→ H is the composition of an epimorphism
followed by an isomorphism, followed by a monomorphism. Indeed we have the
homomorphisms G −→ G/ kerφ −→ imφ −→ H by the First Isomorphism
Theorem.

1.7 Group Actions

Suppose that G is a group and S is a set. We say that G acts on S if a
homomorphism G −→ Per(S) is given. Alternatively, we can say there is a
map G × S −→ S defined by (x, s) −→ ψx(s) where ψx ∈ Per(S). We define
x ·s = ϕx(s). Some properties: First is that (xy) ·s = x · (y ·s), and also 1 ·s = s,
since the map given above must be a homomorphism.

Below are some examples of group actions:

Example 7. First we have the trivial action. Given a set S we define for all
g ∈ G and s ∈ S g · s = s. Furthermore, any group acts on the empty set.

Some more important examples:

Example 8. Take any group G and let H ⊂ G be a normal subgroup of G.
Then G acts on H by conjugation through the map G −→ Aut(H) defined by
g −→ ψg where ψg(x) = gxg−1.

It is not too difficult to see that conjugation is an automorphism on every
normal subgroup H. In particular, the set of all maps arising as a conjugation
forms a subgroup of Aut(G).

Definition 19. The Inner automorphisms of a group G are defined as Inn(G) =
{ψg ∈ Aut(G) : g ∈ G and φg(x) = gxg−1}. Indeed also it is not too difficult
to work out that Inn(G) is normal in G. We define the Outer automorphisms
of a group G to be Out(G) = Aut(G)/Inn(G).

This prompts a new definition of a normal subgroup. Note that a set A is
stable under f if one has the inclusion f(A) ⊂ A.

13



Definition 20. A normal subgroup is a subgroup of G which is stable under
inner automorphisms in G. A characteristic subgroup N ⊂ G is a subgroup
which is stable under all automorphisms of G.

Note that if H is characteristic in N and N is characteristic in G then H is
characteristic in G. There is also this variant, if H is characteristic in N and
N is normal in G then H is normal in G. Being characteristic is stronger than
being normal.

We return to some examples of group actions. Let G be a group and X be
the set of all subsets of G (when this makes sense). Then G acts on X through
mapping a set S by left-muliplication or conjugation (or right multiplication).

Example 9. Let X be the set of all subgroups of a group G. G acts on X by
x ·H = xHx−1 (note that xHx−1 is a subgroup because 1 ∈ xHx−1, xHx−1 is
closed under multiplication, and inverses (because H is).

G also acts on itself by left-multiplication. G acts on itself by right-mutliplcation
through g · x = xg−1 (note that the inverse is needed, otherwise it is not an
action).

Definition 21. Let V be a vector space over a field F . A linear represen-
tation of a group G is a group homomorphism G −→ GL(V ), where again
GL(V ) ⊂ Per(V ) is the group of linear automorphisms of V. In particular a
linear representation is an action.

Definition 22. Let S and S′ be equipped with a G action. A morphism of
G-sets, is a map S −→f S′ s.t. f(x · s) = x · f(s) for all x ∈ G and s ∈ S.

Definition 23. The isotropy subgroup of an element s ∈ S, denoted by Gs =
{g ∈ G : gs = s} is a subgroup of G. The orbit of an element s ∈ S, denoted by
Gs = {gs : g ∈ G} ⊂ S. An element s ∈ S is called fixed if Gs = G, or in other
words gs = s for all g ∈ G, or in other words that the orbit Gs = {s}.

Definition 24. If G acts on a set S then the kernel of the action is defined to be
the kernel ofG −→ Per(S). The action is said to be faithful if the kernel is trivial.
Note that the kernel is equal to

⋂
s∈S Gs = {g ∈ G : gs = s for all s ∈ S}.

An action is said to be transitive if for all s1, s2 ∈ S there is g ∈ G such
that gs1 = s2. Alternatively an action is transitive iff there is s ∈ S such that
Gs = S. Note that a transitive action has no fixed points unless S is empty or
of size 1, since if s ∈ S then gs = s for all g ∈ G implies that if s∗ ̸= s then
there is no g ∈ G such that gs∗ = s.

We say also that s ∈ S is a fixed point for an element g ∈ G if gs = s. The
notion of a fixed point will be clear on the occasion.

Some more examples of actions are as follows:

Example 10. If G acts on a normal subgroup H by conjugation then we have
Gs = CG({s}) = NG({s}). If G acts on itself by translation then we have
Gs = {1}, since if gs = s then applying s−1 yields that g = 1.

14



Suppose S is a G-set and s′ = xs for some x ∈ G where s′ and s are fixed.
If g ∈ Gs then we have gs = s and therefore gx−1s′ = x−1s′, which implies
that xgx−1s′ = s′ so xgx−1 ∈ Gs′ . Hence we have xGsx

−1 ⊂ Gs′ . On the
other hand, we have that the same holds when x is replaced by x−1, so this
immediately gives us equality.

Definition 25. A morphism of G-sets S and S′ is a map S −→f S′ such that
f(gs) = gf(s) for all s ∈ S and g ∈ G.

Under this definition a composition of morphisms is again a morphism and
the identity is a morphism, hence we have the notion of an isomorphism, which
is just a bijective morphism. The set of all G-set isomorphisms of the form
f : S −→ S forms a subgroup of Per(S).

It is important to note that the orbit and isotropy subgroup of an element
s seem to be inversely proportional in size. See below for the start of the
discussion:

Lemma 29. Suppose that G acts on a set S. Then the orbits of the action form
a partition of S with the associated equivalence relation x ∼ y iff there is g ∈ G
such that gx = y.

This above lemma is trivial, just prove that the rule above is indeed an
equivalence relation. If C is a system of representatives of the orbits, then the
above implies that S =

⋃
s∈C Gs is a disjoint union equal to S. Note as well

this means that if G acts on S transitively then there is only one orbit.

Theorem 30 (Orbit Stabilizer Theorem). Let G act on a set X and x ∈ X be
given. Then there is a well defined bijection Gx −→ G/Gx given by gx −→ gGx.

Proof. This map is well defined. Indeed, if gx = hx then h−1gx = x so h−1g ∈
Gx which implies gGx = hGx. Indeed also these implications can be read in
reverse to show that the corresponding map G/Gx −→ Gx is also well defined,
and then these maps are inverses of each other.

Corollary 1. Let H ⊂ G be a subgroup of a group G. Then the number of
subgroups conjugate to H is [G : NG(H)].

Proof. G acts on the set of all subgroups by conjugation. For a given subgroup
H we have GH = {gHg−1 : g ∈ G} and GH = {g ∈ G : gHg−1 = H} = NG(H).
The result now follows from the Orbit Stabilizer theorem.

Now we will discuss some important actions in more detail. First we begin
with the action of left multiplication of a group on itself.

Theorem 31 (Cayleys Theorem). Let G be a group and let G act on itself by
left-multiplication. Then the action is faithful, transitive, and has no fixed points
(unless G = {1}). In particular, G is isomorphic to a subgroup of Per(G).
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Proof. Let g ∈ G and suppose gh = h for all h ∈ G. Applying h−1 yields g = 1,
so the kernel is trivial. Now we want to show that this action is transitive.
Let g1, g2 ∈ G. Then we have g1(g

−1
1 g2) = g2 and so this action is transitive.

Finally let h ∈ G and suppose that gh = h for all g ∈ G. Applying h−1 yields
g = 1 for all g ∈ G, so G = {1}.

Since the action is faithful, the kernel of the permutation representation is
trivial and therefore we conclude that G is isomorphic to a subgroup of Per(G)
by the First Isomorphism Theorem.

The following Lemma is also super useful. It generalizes the well known case
of p = 2.

Lemma 32. Suppose that G is a finite group and H is a subgroup of G such
that [G : H] = p is the smallest prime factor of |G|. Then H is normal.

Proof. Let G act on G/H via. the rule g(aH) = (ga)H. This is well defined
because aH = bH iff b−1a ∈ H iff b−1g−1ga ∈ H iff (ga)H = (gb)H. Let K be
the kernel of this action K = {g ∈ G : gaH = aH for all aH ∈ G/H}. Then
K is normal in G because it is the kernel of the permutation representation. If
k ∈ K then we have kH = H and therefore k ∈ H so we now have the following
chain K ⊂ H ⊂ G. Write [G : H] = p and [H : K] = m. Then we have that
[G : K] = mp and G/K is isomorphic to a subgroup of Per(G/H) which has
size p!. Therefore mp | p! which implies that m | (p − 1)!, but m | |G| and p is
the smallest prime factor of |G| so this forces m = 1 and therefore H = K.

Let C be a system of representatives for the orbits for an action of G on S.
Since S =

⋃
s∈C Gs is a disjoint union of orbits one has that |S| =

∑
s∈C |Gs| ,

but then the Orbit Stabilizer Theorem tells us that this sum is precisely |S| =∑
s∈C |Gs| =

∑
s∈C [G : Gs]. In the particular case where S = G and G acts on

itself by G by conjugation we have the class equation:

Theorem 33 (The Class Equation). Let C ⊂ G be a set of representatives of
conjugate elements (that is, g ∼ h if there is x ∈ G such that g = xhx−1). One
has the formula

|G| =
∑
s∈C

|Gs| =
∑
s∈C

[G : Gs] =
∑
s∈C

[G : CG({s})] = |Z(G)|+
∑

s∈C\Z(G)

[G : CG({s}].

Proof. It suffices to note that [G : CG({s})] = 1 if and only if CG({s}) = G if
and only if s ∈ Z(G).

Now we move onto p-groups. Before this, we simply define the order of an
element x ∈ G to be the order of the (cyclic) subgroup generated by x.

Definition 26. Let p be a prime. A finite group G is called a p−group provided
that |G| = pk for some k

Lemma 34. Let G be a non-trivial p-group. Then Z(G) ̸= {1}.
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Proof. The class equation tells us that p divides |G| and p divides [G : CG({g}]
as long as CG({g}) ̸= Z(G), so in particular we get that p divides |Z(G)| , so
Z(G) is non-trivial.

Theorem 35. Let G be a group of size p2 where p is a prime. Then G is
abelian.

Proof. The center of G is non trivial, so either the center is G or it is of order
p. If the center is G then we are done. If not, then G/Z(G) is a group of prime
order, so it is cyclic and therefore G is abelian.

We discuss cycles a little bit here, since they will be very useful in the
future. We stated earlier that any cycle can be decomposed into a product of
transpositions:

(a1 . . . ar) = (a1 a2)(a2 a3) . . . (ar−1 ar).

It is also not too hard to see then that the set of all transpositions generate Sn.
For conjugation in Sn we have the nice formula

σ(a1 . . . ar)σ
−1 = (σa1 . . . σar).

We define the sign of a permuation σ ∈ Sn to be the sign change of its action
on Z[x1, . . . , xn] through the polynomial

σ ·Πn
i ̸=j(xi − xj) = Πn

i̸=j(xσ(i)
− xσ(j)

),

which is either invariant or leaving the polynomial as its negative. This induces
a map ε : Sn −→ {±1} which is a homomorphism and we define An to be the
kernel of this map. Note through this definition we have that An is normal in
Sn. An = {σ ∈ Sn : σ decomposes into an even amount of transpositions}.

Lemma 36. |An| = n!/2

Proof. This follows from the first isomorphism theorem.

Now we discuss Cauchy’s theorem, which shows the existence of a subgroup
of order p if p | |G| .

Theorem 37 (Cauchy’s theorem). Suppose that G is a finite abelian group and
p is a prime number dividing the order of G. Then there is a subgroup H ⊂ G
of order p.

Proof. Every finite abelian group is finitely generated and therefore of the form
Zk×Z/pk1

1 × . . .×Z/pkn
n , but Z is infinite so k = 0.Whence now it is easy to see

that there is a cyclic subgroup N with orer pk for some k ≥ 1. Take a generator
x ∈ N , then xp

n−1

is an element of order p.
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1.8 Sylow Theorems

Now we begin the Sylow Theorems. Let G be a finite group and p a prime
number. We can write the order of G uniquely as pkm where p does not divide
m. In other words k is as large as possible. If a p-subgroup of G, say H has
order pk as above then H is called a Sylow-p subgroup of G.

Theorem 38 (Sylow 1). Let G be a finite group and p a prime number. Then
G has a Sylow-p subgroup.

Proof. We induct on |G| = n. The base case is trivial. Now for a general
group G, if we can find a proper subgroup H ⊂ G so that p doesn’t divide
[G : H] = |G| / |H| > 1, then we can find a p-sylow subgroup of H and therefore
it will be a p-sylow subgroup of G.

Hence, we may assume for every proper subgroup H ⊂ G we have p | [G :
H] = |G| / |H| , so therefore p | |G| . Then |G| = |Z(G)| +

∑
s∈C\Z(G)[G :

CG({s})]. Then in the sum recall that G ̸= CG({s}), so we can say that p
divides each term of the sum, and therefore the entire sum. Therefore p divides
Z(G) so by Cauchy’s theorem there is a subgroup H ⊂ Z(G) of order p. Note
that H is a normal subgroup of G because H is contained in the center and
so if we consider the quotient G/H we can find a p-Sylow subgroup S ⊂ G/H.
Then the lattice theorem tells us that there is a subgroup containing H of order
|H| |S| = pk for some k and it follows then that this subgroup is a Sylow-p
subgroup.

Theorem 39 (Sylow 2). Let P be a p−Sylow subgroup of a finite group G and
Q a p−subgroup of G. Then there is a g ∈ G such that Q is a subgroup of
gPg−1. In particular any two p-Sylow subgroups are conjugate.

Theorem 40 (Sylow 3). The number of p-Sylow subgroups (denoted by np) of
G are congruent to 1 mod p. If |G| = pkm so that p doesn’t divide m then
np | m. If P is any Sylow-p subgroup of G, then np = [G : N(P )].

Proof. Look at the orbit stabilizer theorem and the action of conjugation on the
set of p-Sylow subgroups.

We omit these two above theorems.

Lemma 41. The following are equivalent. P is the unique sylow p-subgroup
of G. P is normal in G. P is characteristic in G (invariant under any φ ∈
Aut(G)).

Now we begin some applications of the Sylow theorems. First note that for
any two subgroups H,K if |H| and |K| are co-prime then their intersection is
trivial since any element in the intersection must have order dividing the group.

Example 11. Groups of order pq where p < q and p doesn’t divide q − 1 are
cyclic. Indeed, the number of q-Sylow subgroups divides p and is congruent to 1
mod q so we conclude there is only one. Same with p-Sylow subgroups (where
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we use that p doesn’t divide q − 1). Denote these by H and K. Then their
intersection is trivial (because they are coprime) and thus |HK| = |H| |K| = pq.
It follows that HK is a subgroup because H is normal in G and thus H ×K ∼=
HK by Lemma 16. Thus H ×K is cyclic because both are cyclic and co-prime
in order. This generalizes to groups of order pq.

Example 12. Groups of order pqr where p < q < r are primes are not simple
(have a proper normal-subgroup). Indeed, we have nr ≡ 1 mod r and nr | pq
implies that nr ∈ {1, p, q, pq}, but the choices of p and q aren’t possible since
p < q < r < nr, (because nr ≡ 1 mod r). If nr = 1 then we are done, so now
suppose that nr = pq. Then there are pq(r− 1) elements of order r. Now nq | pr
but nq > p so it follows that nq = r or nq = pr. If nq = pr then there are
pr(q − 1) elements of order q. In total there are then prq − pr + pqr − pq =
pqr + p(qr − r − q) > pqr elements of order either r or q which is bigger than
the order of G, hence nq = r so there are r(q − 1) elements of order q. Now
if np = 1 we are done. Otherwise we have np | qr so that np ≥ q. Hence
there are at least q(p − 1) elements of order p. In total then there are at least
pq(r−1)+r(q−1)+q(p−1) = pqr−pq+rq−r+pq−q = pqr−rq−r−q > pqr
elements of order p, q or r, again a contradiction.

Now because of this we have that one of nr, np, nr = 1. Let H be the unique
Sylow-subgroup for one of these primes. Consider the chain 1 ⊂ H ⊂ G. It
follows that this is a normal chain and G/H is of order either pq, qr, or rp, hence
Example 11 tells us that G/H is cyclic, and therefore abelian. Furthermore H
is of prime order, so cyclic, and therefore G is solvable (which we will define
what that is right now).

1.9 Solvable Groups

Here we will only be working with finite groups. A tower of subgroups in a
group G is a finite chain of subgroups G = G0 ⊃ G1 ⊃ . . . ⊃ Gm. A tower is
normal if Gi is normal in Gi−1 for all i. A normal tower is abelian if Gi−1/Gi

is abelian for all i. A normal tower is cyclic if Gi−1/Gi is cyclic for all i.

Lemma 42. A normal (resp. abelian, cyclic) tower G′ = H ′
0 ⊃ H ′

1 ⊃ . . . ⊃ H ′
m

yields tower under a homomorphism G −→f G′ by letting Hi = f−1(H ′
i).

Proof. Indeed H ′ being normal in G′ means that H is the kernel of the well
defined map G −→f G′ −→ G′/H ′ and therefore H is normal in G. Indeed
also G/H embeds into G′/H ′ so if G′/H ′ is abelian (resp. cyclic) then so is
G/H.

On the other hand if f : G −→ G′ is a surjective homomorphism then taking
images under a tower (normal, abelian, cyclic) yields another tower (normal,
abelian, cyclic).

Definition 27. Let G = G0 ⊃ G1 ⊃ . . . ⊃ Gm be a tower. Its refinement is
another tower on G obtained by adding intermediate terms.
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Definition 28. A finite group G is solvable if it has an abelian tower ending
with 1.

Note that all abelian groups are solvable, indeed we have 1 ⊂ G is an abelian
tower.

Lemma 43. Let G be a finite abelian group. Then G admits a cyclic tower
ending with 1.

Proof. We induct on |G| = n. If n = 1 then we are done. Now if 1 ̸= x ∈ |G| then
|G/H| < |G| where H = ⟨x⟩. Indeed also every subgroup of an abelian group
is normal so we have that G/H admits a cyclic tower ending with 1. Then we
can move this tower to G via the projection map G −→ G/H. It follows that
we have a cyclic tower G = G0 ⊃ G1 ⊃ . . . ⊃ Gm = H where we computed
Gm = π−1(1) = {g ∈ G : gH = H} = {g ∈ G : g ∈ H} = H. Adding 1 to the
end of the tower yields a cyclic tower.

Lemma 44. Any abelian tower admits a cyclic refinement.

Proof. Let G = G0 ⊃ G1 ⊃ . . . ⊃ Gm be an abelian tower. Take some quotient
Gi/Gi+1. Then Gi/Gi+1 is finite and abelian and so admits a cyclic tower
ending in 1. Then moving everything back we get a refinement of the part
Gi ⊃ Gi+1 and repeating this to every quotient yields a cyclic refinement.

Corollary 2. Any solvable group G admits a cyclic tower ending with 1.

Proof. Repeating the above Lemma, we obtain a cyclic tower, but since the
tower ends in 1 already we get what we want.

Theorem 45. If G is a finite group and H is a normal subgroup then G is
solvable iff H and G/H are both solvable.

Proof. In the forward direction if G is solvable then we get a solvable tower
through the inclusion H −→ G. Similarly we get a solvable tower in G/H
through the map G −→ G/H because it is a surjection. On the other hand if
G/H and H are solvable then we have a solvable tower G/H = G0 ⊃ . . . ⊃
Gm = 1 and a tower H = H0 ⊃ . . . ⊃ 1. Take the tower back under the map
G −→ G/H and attach it to the tower that H induces.

Now we begin our discussion of the commutator subgroup. A commutator
on a group G is a product [x, y] = x−1y−1xy.

Definition 29. The commutator subgroup G(1) ⊂ G is the subgroup generated
by all commuators on G, i.e. the subgroup where all products are commuatators.

Lemma 46. G(1) ⊂ G is normal and G/G(1) is abelian. Furthermore G(1) is
the smallest subgroup in G with the above two properties. That is, if H is any
normal subgroup such that G/H is abelian then G(1) ⊂ H.
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Proof. If we conjugate a commuator we have

gx−1y−1xyg−1 = gx−1g−1gy−1g−1gxg−1gyg−1 = [gxg−1, gyg−1] ∈ G(1).

To show abelianness for x, y ∈ G/G(1) one has x−1y−1xy = x−1y−1xy = 1 ∈
G/G(1), so then we have xy = yx.

Lemma 47. Let G −→f A be a homomorphism to an abelian group A. Then
ker f contains G(1).

Corollary 3. If a non-trivial finite group G is solvable then its commutator
subgroup is a proper subgroup.

Proof. If G is solvable then it admits a cyclic tower ending in 1. This implies
there is some H ⊂ G such that H ̸= G and G/H is cyclic, and therefore abelian,
so G(1) ⊂ H.

For any group G we can construct an abelian tower

G = G(0) ⊃ G(1) ⊂ . . .

where G(1) is the commutator subgroup of G and G(i+1) = G(i)(1) . G(i) is called
the i-th commutator subgroup of G. This tower can be infinite, and it may
happen that G(i) = G(i+1) = . . .. If it does not end in 1, then G can not be
solvable. See the below theorem:

Theorem 48. If G is solvable, then G(m) = 1 for some m ≥ 0. In particular
the commuatator series gives an abelian tower ending in 1.

Proof. We claim that G(i) ⊂ Gi (therefore G(n) ⊂ Gn = 1). Since G/G1 is
abelian, by the definition of the commutator subgroup we have the following
relation G(i) ⊂ Gi.

Lemma 49. Every p-group is solvable.

Proof. The base case n = 1 is trivial. Now if G is a p−group then Z(G) is non-
trivial, so G/Z(G) is again a p-group of smaller order. Thus G/Z(G) admits an
abelain tower ending in 1. Pulling back from the projection we get an abelian
tower in G ending with Z(G). Adding 1 at the end of this tower yields the
Lemma.

Now we discuss the solvability of Sn. Note that S1 and S2 is solvable since
they are abelian. S3 is solvable because the number of 3 Sylow subgroups divides
2 and is congruent to 1 mod 3 and therefore must be equal to 1. Denote this
subgroup by P . It follows then that P is normal in S3 and |S3/P | = 2 which
implies that S3/P is abelian. Hence we have the abelian tower S3 ⊃ P ⊃ 1.
Similarly S4 is solvable. Look at the subgroup H of all disjoint transpositions of
even order. This subgroup is abelian and normal in S4. Thus we get the chain
S4 ⊂ H ⊂ 1. Then H is solvable because H is abelian, and S4/H is solvable
because |S4/H| = 6 (where we use the same argument for S3). Therefore since
H is normal in S4 we conclude that S4 is solvable.
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Theorem 50. For all n ≥ 5, Sn is not solvable.

Corollary 4. An is solvable for n = 1, 2, 3, 4 but not solvable for n ≥ 5.

Proof. For n ≥ 5 An is normal in Sn and Sn/An is abelian because it is of order
2, so if An was solvable we would have that Sn is solvable. Apply the same
argument for n = 1, 2, 3, 4.

Definition 30. A group G is called simple if it contains no proper normal
subgroups.

Note that a non-abelian simple group is never solvable.

Theorem 51. An is simple for n ≥ 5.
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